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Abstract

One of the greatest problems with plasma engines is unacceptable

heat transfer rates due to the contact of the plasma with the

walls. If a magnetic field is interposed transverse to the ther-

mal conduction path of the electrons in the plasma flow, there is

the potential of magnetically insulating the walls and reduce the

losses.

The magnetically driven plasma rocket, also known as magnetic in-

duction plasma engine, is a propulsion concept which allows the

plasma to be magnetically insulated from the wall, and thereby

eliminates large heat transfer and other damage to the walls.

The purpose of this paper is to review the status of our

knowledge of the basic concepts needed to establish design

parameters for effective magnetic insulation. The objective is

to estimate the effectiveness of the magnetic field in insulating

the plasma, to calculate the magnitude of the magnetic field

necessary to reduce the heat transfer to the walls sufficiently

enough to demonstrate the potential of magnetically driven plasma

rockets.
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INTRODUCTION

The rate of progress in space exploration and space technology
will be determined by the development of advanced propulsion sys-
tems which more effectively can store energy and more efficiently
can convert such energy into useful thrust.

For the past thirty years, manned and unmanned spacecrafts have
left Earth's confining gravity well via chemical rockets.
However, chemical rockets are inadequate for long duration space
missions, including manned missions to Mars. Electrical propul-
sion was suggested a few decades ago as an enticing possibility
for reducing the cost of propelling large payloads in space.

Plasma engines, which fall under the category of electric propul-
sion, have the potential for providing the next generation ad-
vance propulsion systems. Their primary attraction lies in their
highly efficient utilization of propellant mass. Many years ago,
plasma propulsion was advocated as superior to other electrical
propulsion systems (Ref. 3, 22).

Magnetic containment, a concept whereby the highly energetic
plasma flow is insulated from the thruster's chamber walls, was
the focus of several investigations over three decades ago. In
1958, R.M. Patrick (Ref. 12) proposed a magnetohydrodynamic
propulsion motor based on his propulsive device which employed a
magnetic field to insulate the plasma from the walls. This mag-
netic accelerator consisted of a shock tube driven by ionized.

hydrogen. For the proposed MHD propulsor, Patrick recommended

the use of lithium vapor instead of liquid hydrogen or deuterium

on the basis of their specific gravity which would require larger

storage tanks for the latter fuels. From 1958 to 1962, further

research in magnetic insulation for MHD propulsion application

was conducted (Ref. 1,2,17,28 ) but thereafter the emphasis was

shifted to other areas.

Although the basic theoretical properties of a magnetized plasma

were fairly well understood at the outset of plasma propulsion

research, it appears as if experimental difficulties and inherent

plasma unstable behaviour overshadowed any further interest in

magnetic insulation for propulsion systems.

Theoretical efforts directed towards the fundamental understand-

ing of plasma confinement and heating received high priority by

the Fusion Reactor programs of the 1960's. By the early 1970's,

the theoretical understanding of magnetically confined plasmas

had advanced impressively, but by then the focus of the space

propulsion program had been shifted to developing the Space

Shuttle chemically-propelled Main Engines and there was no ex-

perimental basis for the extrapolation of any magnetic-
confinement scheme to the conditions of a practical plasma

propulsion device. Since plasma fusion research is a long-term,



energy-related topic, its support derives mainly from the Depart-
ment of Energy (DOE) and magnetic-confinement research is
oriented towards fusion reactor geometries where the requirements
of low weight-to-thrust are irrelevant.

The prospects for success in plasma propulsion research appear
better now. The improved understanding of magnetically confined
plasmas derived from fusion reactors could be applicable if a
good interpretation of the requirements for space propulsion is
made. We believe that magnetic confinement will be one of the
most important.
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CLASSIFICATION OF ELECTRIC PROPULSORS

To achieve the high exhaust velocities required for future

planetary missions, high enthalpy heating of an insulated gas

stream or direct acceleration of it by applied body forces can be

most reasonably accomplished by some form of electrical means.

Electric propulsion is defined (Ref. 40) as:

"the acceleration of gases for propulsion by electric

heating and/or by electric and magnetic body forces"

Electric propulsion systems can be classified into three broad

categories: electrostatic, electrothermal, and electromagnetic
thrusters.

a. Electrostatic propulsion devices use strong electric

fields applied by an accelerator grid to extract and accelerate

the propellant ions in the discharge. Ion thrusters fall under

this category.

b. Electrothermal propulsion systems use electric fields to

heat the propellant gas which is then expanded in a suitable

nozzle. These systems include resistojets, arcjets, pulsed

electro-thermal thrusters, and laser propulsion systems.

c. Electromagnetic propulsion devices are characterized by

the use of jxB forces to accelerate the ionized propellant. Un-

der this category we find MPD thrusters, electromagnetic launch-

ers, the MIP engine, and Hall current thrusters.

In spite of their attractiveness, electric propulsors are still

insufficiently developed. These systems are characterized by

rather complex conversion steps between the energy source and the

exhaust jet and the efficiency of the process is very much com-

promised. This complexity, combined with the resulting high

weight-per-unit thrust has slowed the progress of electric sys-

tems. In 1981, Garrison (Ref. 23 ) concluded that the mass of the

magnet and fusion trigger systems would limit the application of

this technology to large vehicles. However, the exhaust

velocities potentially achievable by these mechanisms have been

found to be more than adequate to qualify for the long-duration

interplanetary missions outlined above (Ref. 40) and as such,

electric propulsion systems deserve our attention.
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PLASMA CONFINEMENT AND INSTABILITIES

The plasma must be confined for a sufficient time and cannot be

in contact with any material wall. The fact that a plasma con-

sists of charged particles makes it possible to confine them by

applying a strong external magnetic field. However, despite the

magnetic confinement, some of these charged particles escape

without undergoing fusion reaction. This particle loss cannot

be eliminated completely and it sets an upper limit on confine-

ment time (classical confinement time).

Experimentally, anomalous losses seem to be associated with

plasma turbulence. For a fully turbulent plasma, the confinement

time is termed the Bohm time, used as a basis for comparing the

quality of plasma confinement.

There are other kinds of plasma instability which cause the hot

plasma to be lost before it has reached the required temperature:

a) MHD instability - plasma is a diamagnetic material and will

always move to the weaker magnetic field.

b) Stream instability - a condition arising from the presence of

a directed beam of energetic particles in a plasma.

c) Hydromagnetic instability arising from imposed currents within

the plasma itself producing jxB forces.

d) Other instabilities arising from density gradients, velocity

gradients, etc.

Confinement studies have been conducted in several magnetic-

field configurations for fusion reactor applications. A plasma

can become unstable in many ways, including both macroscopic and

microscopic instabilities. In a macroscopic instability there is

a gross motion of the plasma to the wall. Gross motions can be

controlled by magnetic wells and by magnetic shear configurations

(Ref. 7). The microscopic instabilities are more akin to fluid

dynamic turbulence. The result of these instabilities is in-

creased diffusion to the walls. They may be caused by density

and temperature gradients in the plasma or by non-Maxwellian

velocity distributions of the ions or electrons. All these in-

stabilities derive from the fact that the plasma is not in a

state of thermodynamic equilibrium. If the plasma relaxes to the

equilibrium state, it can release free energy that can drive the

instabilities. To avoid this, we must either eliminate the non-

equilibrium conditions or prevent the plasma from relaxing to the

equilibrium state.
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The magnetic-well concept is a means of preventing the plasma
from relaxing to the equilibrium state. Magnetic wells have
proved completely effective in eliminating macroscopic in-
stabilities in open-ended systems.

The other way to control macroscopic instabilities in a torus is
by application of magnetic shear. The Tokamak T-3, a Russian
toroidal machine with magnetic shear is the best known example.

Because of the relatively simple geometry of the open-ended sys-
tems, the theoretical understanding of microscopic instabilities
in such systems is fairly complete. The theory also suggests
ways of eliminating most of the instabilities.

In 1975, Papailiou (Ref. 5) reviewed the energy transfer process
occurring between a fluctuating magnetic field and the velocity
field of a conducting fluid in turbulent motion. He referred to
the analysis by Batchelor (Ref.149) on the similarity between the
fluid dynamic vorticity equation and the equation for the rate of
change of the energy in the fluctuating magnetic field.
Papailiou concluded that a hydromagnetic dynamo, in which energy
flows from the velocity field to the magnetic field can only
operate under the condition where is the magnetic
diffusivity and is the kinematic viscosity of the fluid.
Based on this energy exchange scheme, he recommended ionized
hydrogen as the working fluid. Further, Papailiou diffusion
equation indicated that the magnetic field decays into the con-
ducting fluid of conductance , with decay time several order
of magnitude higher than the interaction time with the turbulent
fluid; this prohibits the complete annihilation of the magnetic
field and therefore causes a reduction in the amount of energy
transferred to the conducting fluid. In spite of this problem,
the application of this concept in propulsion was believed to be
promising so Papailiou recommended the conducting of a
theoretical-experimental effort to examine the mechanism of decay
of a fluctuating magnetic field in an electrically conducting
fluid in turbulent motion.
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MAGNETIC INSULATION

One of the greatest problems with plasma engines is unacceptable

heat transfer rates due to the contact of the plasma with the

walls. In 1960, Clauser (Ref. i) estimated the reduction of the

heat transfer rate by using a magnetic field transverse to the

thermal conduction path of the electrons. Clauser theorized that

the ratio of the electron collision frequency to the electron

cyclotron frequency determined the extent of decrease of the

thermal conduction. At the same time, Janes from the AVCO-

Everett Labs (Ref. 2) predicted that the level of magnetic field

strength necessary for magnetic confinement of the plasma was a

fraction of the magnetic field for plasma acceleration. Janes'

work focused on the application of plasma insulation for the Mag-

netic Induction Plasma (MIP) engine, which is an electrodeless
device.

In a separate program, Fowler and Turner (Ref. 17) demonstrated

experimentally how a magnetic field could effectively insulate

the hot plasma from the walls of a shock tube. They found that

when the cyclotron frequency of the electrons is greater that the

frequency of collision, which cause diffusion across the field

lines, this effect could be observed.

Studying plasma containment for control of thermonuclear reac-

tions, stability of the plasma and magnetic field seem to preoc-

cupy us. Clauser (Ref. i), in 1960, observed that for a short

shock tube, such instabilities would not have time to grow since

the time required for the instability to develop is of the order

of the time required for a particle or sound wave to transverse

the tube and return.

The next paragraphs will describe the type of analysis that have

been conducted to demonstrate the feasibility of using magnetic

forces to insulate the plasma.

In 1959, Camac, et al (Ref. 14) proposed the use of magnetic

fields to keep the electrically conducting plasma from the walls

and thus minimize heat losses. Their analysis was based on the

assertion that electrical propulsion devices operate at lower

power levels as compared with conventional chemical rockets; this

results in lower gas densities and lower Reynolds numbers which

in turn produce thicker boundary layers on the walls and there-

fore greater energy losses. They related the boundary layer

thickness to specific impulse and thrust power and concluded

that magnetohydrodynamic containment would be more efficient at

high specific impulses and for fully ionized gases. Electrode

losses in the form of dissipated potential drop were also

believed to be reduced by the use of magnetohydrodynamic forces.



Clauser (Ref. 1 ) later developed a relationship for the depth of
penetration, or skin depth, primarily dependent on the magnetic
Reynolds Number, assuming a plasma Beta of one. The (rf current)
skin depth is the distance to which the electromagnetic field is
able to penetrate in a cycle. For typical shock tube conditions,
Clauser concluded that the skin depth was small enough that the
interface between the magnetic field and the plasma could be
thought of as a surface rather than a volume.

Confinement of plasma at fusion temperatures makes use of the
fact that charged particles tend to gyrate in tight spirals along
the lines of force in a magnetic field. However, the plasma has
a kinetic pressure p that is large enough to depress the magnetic
pressure of the confining magnetic field by a factor Beta ( b )
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The attainable value of Beta depends mainly on the geometry of

the magnetic confinement. (For fusion reactor design, typical

magnetic field strengths of 50 kilogauss and Beta values of 6

percent provide plasma pressures of about 6 atmospheres , Ref.60)

The heat conduction coefficient of a gas at very high temperature

is much greater for a fully ionized gas. If a magnetic field is

interposed transverse to the thermal conduction path of the

electrons, the thermal conduction is decreased. To obtain an es-

timate of the effectiveness of the magnetic field in insulating

the plasma, Clauser calculated the strength of the magnetic field

necessary to reduce the conductivity i00 fold.
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MAGNETICNOZZLE CONCEPT

Plasma thrusters produce high speed flows in a diverging magnetic
field. The acceleration mechanism is due to the diverging mag-
netic field which acts as a nozzle. Axial acceleration occurs as
a result of both the magnetic pressure exerted by the nozzle and
the conversion of thermal motion into axially directed motion.

In 1971, Walker and Seikel (Ref. 8) studied the axisymmetric ex-
pansion of a plasma in a magnetic nozzle. Their analysis con-
siders the flow near the axis of the nozzle including the
electron thermal conductivity. They assumed that the ion tem-
perature is negligible and that the Hall parameter ( ) is
a constant near the nozzle's axis. Chubb (Ref. 9), on the other
hand, included the effects of unequal electron and ion tempera-
tures and electron thermal conductivity.

v

NUMERICAL MODEL

A magnetically confined plasma may be represented by ideal MHD

equations. The MHD model treats the plasma as a charge-neutral

fluid that is in local thermodynamic equilibrium and thus

neglects most of the physics of plasmas. The physics retained,

however, describe the transfer of momentum and energy between the

plasma and the magnetic field. Thus, the MHD model provides the

simplest model by which the effect of the geometry on the gross

equilibrium and stability of a high-beta plasma can be studied.

The MHD equations must be coupled with initial and boundary con-

ditions to obtain a complete evolutionary system.
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SUMMARY

Because of the complexity of physical phenomena involved, our

discussion of plasma magnetic insulation has been rather qualita-

tive. Without experimental research, little can be said about

the validity of the argument that magnetic fields can be used to

insulate plasmas in propulsion devices.

We are particularly interested in the possibility of developing a

mathematical scheme which can adequately model the extent to

which a given magnetic field can insulate a plasma from the

walls.

J
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